
Cornmanications 

Kinetic Resolution via the Transition Metal Complex 
Promoted Rearrangement of Strained Hydrocarbons 

Summary: Chiral rhodium (DIOP) chloride complexes have 
been shown to selectively promote the rearrangement of one 
enantiomer of racemic bicyclo[l.l.0]butane derivatives. This 
kinetic resolution has been shown to give greater than 30% 
enantiomeric excess. A chiral shift reagent was used to de- 
termine the amount of resolution. 

Sir: The use of optically active transition metal complexes to 
promote reactions in which achiral or racemic starting mate- 
rials are converted into optically active hydrocarbons has re- 
cently received considerable attenti0n.l This is particularly 
true in the area of catalytic reductions with homogeneous, 
optically active, Wilkinson2 type ~ a t a 1 y s t s . l ~ ~ ~ ~  In addition, a 
few isolated examples exist in which optically inactive olefins 
or acetylenes have been isomerized over chiral catalysts to  
yield optically active  product^.^ We now wish to report what 
we believe to be the first examples of transition metal complex 
promoted kinetic resolution of highly strained hydrocar- 
bons. 

We had previously demonstrated that certain rhodium(1) 
complexes promoted the rapid rearrangement of 1,2,2-tri- 
methylbicyclo[l.l.O]butane ( and l-methy1-2,2-diphenyl- 
bicyclo[l.l.O]butane (2)7 into the products shown. Our desire 
for optically active variants of 1 and 2 prompted us to explore 
the possibility of a kinetic resolution based on the selective 
isomerization of one member of each of the enantiomeric pairs 
I and 2. In order to accomplish our objectives, we prepared the 
diphosphinerhodium(1) complexes from both (+)- and (-1- 
2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphos- 
phino)butane (hereafter referred to as DIOP) according to 
literature procedures.s I t  was found that Hh(DI0P)Cl pro- 
moted the rapid isomerization of both 1 and 2. 

In order to determine the degree o f  kinetic resolution ob- 
tained when chiral DIOP complexes were used, it was neces- 
sary to develop a method for establishment of the enantio- 
meric excess (ee) which existed after partial rearrangement 
of 1 and 2. The method of analysis, which we developed, in- 
volved treatment of the residual bicyclo[l.l.0]butane, 1 or 2, 
with n-butyllithium in ether followed by addition of methyl 
chloroformate to yield 3 or 4, re~pectively.~ Nuclear magnetic 
resonance spectral analysis of 3 and 4 in the presence of the 
chiral shift reagent, tris[3-(trifluoromethylhydroxymethy- 
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1ene)-d-camphorato]europium(III) resulted in the clean 
separation of both of the enantiomeric ero-methyl resonances 
and of the corresponding methoxyl group resonances of 3, and 
of both of the enantiomeric bridgehead methyl resonances and 
of the corresponding methoxyl group resonances of 4. This 
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provided a double check on the enantiomeric excesses which 
we hoped to generate. 

Table I lists the degree of kinetic resolution observed for 

Table 1. Kinetic Resolution of Racemic Bicyclo[ l.l.O]butanes Using Rh(DI0P)Cl Complexes 

% enantiomeric 
[ffIz5D Time Temp, f 2  "C % conva excess (h5) Compd DIOP 

1 ( - ) e  9 h  0 61 2 $0.48 

-23 .2  2 (-P 30 d 4 56 18 
2 (+P 18 d 4 53 17 +25.3 
2 ( - ) g  22 h 24 62 33 -43.6 

1 ( + ) d  9 h  0 40 e 4f -0.84 

2 (+P 17 h 24 73 35 +45.5 

0 % conversion was determined by NMR analysis vs. an internal standard. Rotations were measured in carbon tetrachloride ( c  
0.5-5.0) using a Perkin-Elmer recording polarimeter model 241. Reaction run in 
3:2 v/v veratrole/diethyl ether. e The percent conversion varied considerably from run to run due to the sensitivity of the reaction 
to the presence of oxygen. f The percent enantiomeric excess for 3 is less than the error factor in determining these values by NMR 
analysis. Thus, the agreement of the rotation of 3 with the determined percent enantiomeric excess may be fortuitous. g Chloroform 
as solvent. 
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Reaction run in 3:4 v/v veratrole/diethyl ether. 
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both 1 and 2 with both (+)- and (-)-DIOP complexes. As 
noted in the table, the degree of kinetic resolution in the re- 
arrangement of 1 was very small, but it did exist. In contrast, 
the diphenyl-substituted bicyclo[ 1.1.01 butane (2) showed 
excellent sensitivity to the chirality of the transition metal 
complex. The development of greater than 30% enantiomeric 
excess in this kinetic resolution indicates to us that the tran- 
sition metal complex promoted rearrangement of strained 
hydrocarbons may be extremely sensitive to steric fac- 
tors.l'JJ1 

In summary, we have provided the first example of a kinetic 
resolution of a strained polycyclic compound. Our procedure 
makes optically active derivatives of bicyclo[l.l.0]butane 
readily available for the first time. We hope that this process 
can be extended to the kinetic resolution of other highly 
strained polycyclic hydrocarbons. 
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